文献基本信息
中文标题:联合聚焦度量与上下文引导滤波的聚焦深度估计
英文标题:Joint Focus Measure and Context-Guided Filtering for Depth From Focus
作者单位:
武汉科技大学电子信息学院
武汉 430081
摘 要:聚焦深度估计(DFF)通过分析图像中各像素的焦点变化来推断场景深度,任务的关键在于定位焦堆栈中的最佳聚焦像素点。然而弱纹理区域中焦点变化通常较为细微,导致聚焦区域检测困难,影响深度估计的准确性。因此,该文提出了一种结合聚焦度量与上下文信息的焦堆栈深度估计网络,方法能够精确识别焦堆栈中最佳聚焦像素,并推断出可靠的深度图。文中将聚焦度量算子概念融入深度学习框架,通过增强聚焦区域的特征表达,提升网络对弱纹理区域细微焦点变化的感知能力。此外,文章引入语义上下文引导机制,利用整合的场景语义信息,指导焦点体积的滤波优化。这使网络能同时捕获局部焦点细节与全局上下文信息,实现对弱纹理区域焦点状态的全面推断。综合实验结果,所提出的模型在主观质量和客观指标相比其他算法都有明显提升,具有良好的泛化能力。